CONTRIBUTION FROM THE LAWRENCE RADIATION LABORATORY AND DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA, AND THE GENERAL ELECTRIC R & D CENTER, K-1, SCHENECTADY, NEW YORK 12301

The Crystal and Molecular Structure of Phthalocyanatopyridinemanganese(III)-µ-oxo-phthalocyanatopyridinemanganese(III) Dipyridinate

BY LESTER H. VOGT, JR., 18 ALLAN ZALKIN, 16 AND DAVID H. TEMPLETON 16

Received March 13, 1967

The crystal and molecular structure of phthalocyanatopyridinemanganese(III)- μ -oxo-phthalocyanatopyridinemanganese-(III) dipyridinate has been determined from an X-ray diffraction study of a single-crystal specimen. Four formula units are contained in an orthorhombic unit cell with $a = 22.635 \pm 0.005$, $b = 23.850 \pm 0.005$, and $c = 12.808 \pm 0.003$ A. The space group is P2₁2₁2₁. The 107 nonhydrogen atoms in the asymmetric unit were refined by least-squares methods using the data from 3156 independent reflections. This novel molecule consists of two approximately flat and parallel manganese phthalocyanine ring systems, joined by an oxygen atom which is midway between the manganese atoms. Each manganese also has a pyridine molecule coordinated opposite to its oxygen atom. The crystals consist of these complex molecules and nolecules of pyridine of crystallization.

Introduction

The chemistry of phthalocyanine complexes of manganese are of interest because of the possibility that more or less similar compounds may be involved in biological oxidative processes.^{2,3} Quite apart from their possible biological applications, they include novel examples of coordination complexes of a transition element. Elvidge and Lever² found that oxidation of pyridine solutions of phthalocyanatomanganese(II) with molecular oxygen resulted in precipitation of short, opaque, purple crystals with a metallic luster. They formulated this substance as Mn^{IV}PcPyO (Pc = phthalocyanato). We have carried out an X-ray diffraction study of crystals produced in this way which show them to be a more complicated double complex of manganese(III), *viz.*, (Mn^{III}PcPy)₂O.

A preliminary account of these results has been published elsewhere.⁴ In this paper we give more extensive details of the structure which resulted after more exhaustive refinement.

Experimental Section

Preparation.—The crystals were prepared by adding 100 mg of phthalocyanatomanganese(II) to 50 ml of pyridine. After stirring for 2 hr in dry air the solution was filtered through a sintered-glass funnel to remove any undissolved Mn^{II}Pc. The deep blue solution was concentrated at room temperature by evaporation in a stream of dry nitrogen until opaque, purple crystals having a metallic luster were observed. They were removed from the mother liquor by filtration and stored in a sealed vial containing an atmosphere saturated with pyridine until ready for use. Exposure of the crystals to air results in the loss of some of the pyridine of crystallization. For this reason, as well as the fact that analytical results on similar classes of compounds are frequently in error owing to incomplete combustion of the sample, chemical analyses are not sufficient per se to determine accurately the empirical formula. Furthermore, several possible empirical formulas, including Lever's Mn^{IV}-PcPyO,² are within the range of accuracy of the analytical results.

Anal. Caled for (MnPcPy)₂O·2Py (C₈₄H₅₂Mn₂N₂₀O): C, 68.75; H, 3.57; N, 19.10. Found: C, 67.68; H, 3.57; N, 19.00.

Crystals of the complex obtained by treating $Mn^{IV}Pc(OH)_2$ with pyridine⁵ in air were identical in color, shape, and diffraction pattern with those of $(Mn^{III}PcPy)_2O\cdot 2Py$ prepared as previously described.

X-Ray Diffraction.—Early work on the complex was hampered by poor diffraction patterns. Subsequently, this was attributed to loss of pyridine of crystallization. The crystal used in the present investigation $(0.15 \times 0.15 \times 0.30 \text{ mm})$ was sealed in a thin-walled glass capillary with a drop of pyridine in the other end.

X-Ray photographs obtained by precession and Weissenberg methods, using Cu K α radiation, established the orthorhombic symmetry of the crystal. The crystal was then transferred to a General Electric XRD-5 goniostat equipped with a scintillation counter and a pulse height discriminator. The unit cell dimensions were then measured and are based on λ 1.54051 A for Cu K α_1 . The intensities of 3156 independent reflections ($2\theta < 80^\circ$) were measured by the stationary-crystal, stationary-counter technique, counting for 10 sec/reflection. The data were corrected for Lorentz and polarization effects. No corrections were made for extinction or absorption ($\mu R \sim 1$). Careful measurements with the counter detected no violations of the extinction rules for space group P212121; similar measurements of Laueequivalent reflections detected differences corresponding to point symmetry 222 and later served to establish the absolute configuration of the specimen.

Calculations were made on IBM 7044 and CDC 6600 computers using full-matrix least-squares and Fourier programs written by Zalkin. The function $\Sigma w(|F_o| - |F_c|)^2 / \Sigma w F_o^2$ was minimized.

Atomic scattering factors for neutral C, H, Mn, N, and O given by Ibers⁶ were used. The real part of the anomalous dispersion correction⁷ ($\Delta f' = -0.5$) was applied to the scattering factor for manganese and the imaginary part (($\Delta f'' = 3.0$) was included in the refinement.

Results

Unit Cell and Space Group.—The unit cell is orthorhombic with dimensions: $a = 22.635 \pm 0.005$, $b = 23.850 \pm 0.005$, $c = 12.808 \pm 0.003$ A, and V = 6717.1 A³. The space group is P2₁2₁2₁ with each cell containing four asymmetric units that consist of (MnPc-Py)₂O·2Py or C₈₄H₅₂Mn₂N₂₀O (107 atoms excluding (5) A. B. P. Lever's method for preparing his Mn^{IV}PcPyO complex: private communication.

 ⁽a) General Electric R & D Center; NIH postdoctoral fellow, 1964– 1965 at the University of California at Berkeley;
 (b) Lawrence Radiation Laboratory and Department of Chemistry, University of California at Berkeley; partly supported by the AEC.

⁽²⁾ J. A. Elvidge and A. B. P. Lever, Proc. Chem. Soc., 195 (1959).

⁽³⁾ G. Englesma, A. Yamamoto, E. Markham, and M. Calvin, J. Phys. Chem., 66, 2517 (1962).

⁽⁴⁾ L. H. Vogt, A. Zalkin, and D. H. Templeton, Science, 151, 569 (1966).

⁽⁶⁾ J. A. Ibers in "International Tables for X-ray Crystallography," Vol. III, The Kynoch Press, Birmingham, England, 1962, p 202.

⁽⁷⁾ D. H. Templeton, ref 6, p 214.

hydrogen). Because of solubility problems, the molecular weight could not be determined by the usual methods; however, from the volume of the asymmetric unit and density measured by flotation $(1.41 \text{ g/ml} \text{ at} 25^\circ)$, a molecular weight of 1469 was determined compared to 1467.3 calculated from the empirical formula.

Determination of the Structure.-The structure determination was surprisingly straightforward and lacked any special difficulty except excessive arithmetic. The two Mn positions were located from the Patterson function. A sequence of least-squares and three-dimensional Fourier calculations, coupled with the assumption that the phthalocyanine rings would have essentially the same shape as determined⁸ in other crystals, led to the structure. To refine the 107 atoms required 439 parameters including a scale factor, coordinates, anisotropic parameters for each manganese atom, and individual isotropic thermal parameters for the other atoms. The least-squares program on our IBM 7044 (32 K memory) computer can handle 160 parameters in a full-matrix calculation. The refinement procedure was started with this program, refining about one-third of the structure at a time. At 2 hr/run, this procedure required 6 hr to shift each parameter.

The program was modified to neglect all off-diagonal elements of the matrix. This change permitted all parameters to be shifted in 1 hr, and more refinement per hour of computer time was realized. Each of the 3156 measured intensities (3048 were nonzero intensities) was given unit weight and was included in the refinement. This procedure was followed through the final, full-matrix refinement described later. The discrepancy index

$$R = \sum ||F_{\rm o}| - |F_{\rm o}| \sum |/|F_{\rm o}|$$

which was 0.48 for the two manganese atoms, was reduced to 0.084 for 107 atoms. The anomalous dispersion effect of manganese was included in the calculations and was sufficient to establish the absolute configuration of the structure⁹ (by comparison of unweighted R values). The full-matrix least-squares program was then modified for the larger capacity CDC 6600 (132 K memory) computer which could refine all of the 439 parameters in one pass (about 1.25 hr). A comparison of the final agreement factors and atomic coordinates from each method of refinement showed that both methods gave essentially the same results, viz., R(diagonal matrix) = 0.084 and R(full matrix) =0.083.

The final atom coordinates and thermal parameters are presented in Tables I and II. Figures 1 and 2 show the atom numbering system and ring orientation, respectively. The largest shift was 0.002 A in the last cycle of refinement. The observed and calculated structure factors are given in Table III. Attempts to

TABLE I
FINAL COORDINATES AND ISOTROPIC THERMAL PARAMETERS
together with Their Standard Deviations,
FOR ALL ATOMS EXCEPT HYDROGEN

ATOM	x	у	z	вр	<u> (x)</u>	x 10 ⁴ σ(y)	J(2)	σ(B)
Mm(A)	0.0231	0.1210	0.0857	c	1	1	2	c
Ma(B)	.0664	.0740	1543	с 3.3	4	4	7	0.2
NPNA	0048	1544	. 2335	4.1	5	5	10	.3 µ
C2PNA	.0056	. 1529	.4221	6.8	9	8	16	-5
C3PNA C4PNA	0390 0575	. 2006	.4245	7.4	9 10	9	17 19	•5 •5
C5PNA	.04 0 6	. 2015	. 2332	6.1	8	8	15	• 4
N+0 LA C++2A	.0074	.2314	0108	3.0	6	6	11	.3
N++3A C++4A	.0342	.1991	.0381	3.2 3.8	5	5	9 11	.2
C++5A	.0771	. 2836	0076	3.5	6	6	11	.3 1
C++7A	.0943	.3763	0781	6.7	8	8	16	4
C++8A C++9A	.0369	.3772	1054 0887	6.2 4.8	8 7	8	15	.4
C++10A	.0213	.2864	0375	3.8	6	6	12	.3
C=+2A	0837	.1688	0146	3.6	é	é	ú	, 3
N-+3A C-+4A	.0586	.0818	.0387	3.8	6	6	11	.3
C-+5A C-+6A	1529	.0989	0032 0167	4.2 5.6	7 8	6 7	12 14	.3
C-+7A	2481	.0990	0764	6.9	8	8	16	•5
C=+8A C=+9A	1865	.1828	0978	5.8	8	7	14	.4
C-+10A N-01A	1423	.1531	0424	4.3 4.7	7	6 5	12 10	.3
C 2A	.0508	.0131	.1931	3.3	é	6	īi	.3
N3A C4A	.0091	.0450	.1344	3.9	6	6	12	.3
C5A C6A	.0326 .0748	0402 0867	.1854	4.8 6.0	7	7	13 14	.4
C7A	.0483	1318	.2576	6.6	8	8	15	• 5
C9A	.0459	0869	. 2828	5.0	7	7	13	.4
C10A NO-1A	.0239	0406	.2231	4.3 3.8	7	6 5	12	.3
C+-2A	.1309	.0750 1200	.1890	3.0	6	6	10	.3
C+-4A	.1450	.1603	1256	4.1	6	6	12	.3
C+-5A C+-6A	.2007 .2558	.1409	.1628	4.6 5.3	7	6 7	13 14	• 4
C+=7A C+=8A	.3023	.1355	· 209 2	6.3	8 8	8	15	.4
C+-9A	. 2356	.0569	2525	5.0	7	7	13	4
NPNB	.0903	.0872	-,3079	4.0	5	ь 5	12	.3
C1PNB C2PNB	.0839	0088	3373	5.2 6.2	7 8	7	14 15	.4
C3PNB	.1135	.0091	5162	5.7	8	8	14	4
C5PNB	.1084	.0820	3830	4.0	6	6	14	.4
N+01B C++2B	0707 0084	.0896 0287	2445 1205	4.1 3.7	5 6	5 6	9 11	.3
N++3B	0017	.0252	1626	3.0 3.4	4	L 6	9	. 2
C++5B	0963	0080	1898	4.2	7	6	12	.3
С++6В С++7В	1830	=.0123 =.0649	1904	5.2 6.7	8	8	15	.5
C++8B C++9B	1532	1044 1001	1350 1058	6.9 5.6	8 7	8 7	15 14	.5
C++10B	0665	0484	1368	3.7	6	6	11	.3
C=+2B	.0866	0374	0551	3.7	6	6	11	.3
N=+3B C-+4B	.1117	.0116 .0152	0926	3.4 3.8	5	5 6	9 11	.2
C-+5B	.1798	0344 - 0483	.0073	4.0	6	6	11	.3
C++7B	. 2282	1002	.1210	6.3	8	8	14	.4
C=+88 C=+98	.1278	1330	.1207	5.4 5.1	8	7	15 13	.5
C-+10B N-01B	.1295	0678	.0067	4.5 4.0	7	7	12	.4
C→-2B	.1416	.1771	1895	3.3	6	6	11	.3
C4B	.1895	.1063	1541 1140	3.7	4	6	11	.2
С5В С6В	.2312	.1537 .1587	1253 0938	4.0 5.0	6 7	6 7	12 14	.3 .4
C7B C8B	.3174	,2103	1096	6.9	8	8	15	•5
C9B	. 2253	.2507	1885	5.3	7	7	13	4
NO-1B	.0987	.2065	2287	4.0	ь 5	6 5	12	.3
C+=2B N+-3B	.04/3	.1890	2452	3.2 3.5	6	6	11	.3
C+-4B C+-5B	0342	.1327	2535	3.3	67	67	11	.3
C+-6B	1060	. 2096	3240	4.8	7	7	13	4
C+-8B	- 0565	.2656	3575 3534	5.5 5.3	7 7	7	14 14	.4 .4
C+-9B C+-10B	0028 0013	.2796 .2217	3193 2875	4.3 4.2	77	6	12	.3
1PM1 2PM1	.3707	2394	0052	13.9	17	15	33	1.0
3PM1	. 27 20	2415	0318	21.1	22	17 23	34 48	1.3
5PM1	.2800	2603 2777	1254 1560	15.8 17.3	20 22	18 17	35 35	1.2
6 PM1 1 PM2	.3753	2449 .0781	- 1158	19.6 14.5	21 16	20 17	41 20	1.5
2PM2 3 PM2	1182	.0345	4947	17.1	19	18	36	1.3
4 PM2	-,1511	.0719	.3255	16.0	18	17 19	35 32	1.2
5PM2 6PM2	1732 1851	.1231	.3624 .4686	14.7 14.4	16 15	16 16	32 32	1.0
a n		-						

^a See Figure 1 for the atom numbering system. ^b Of the form $exp(-B\lambda^{-2} \sin^2 \theta)$ where B is in A². ^c Treated anisotropically—see Table II.

⁽⁸⁾ J. M. Robertson, J. Chem. Soc., 1195 (1936); J. M. Robertson and I. Woodward, *ibid.*, 219 (1937); 36 (1940).

⁽⁹⁾ All molecules in one crystal are of the same handedness, but another crystal from the same preparation is as likely to be right-handed as lefthanded. Thus, there is no general significance to the absolute configuration which we found.

		Ta	ble II			
Fina	l Aniso	TROPIC ^{a,}	^b Therm	ial Par	AMETERS	3
	OF THE	e Two N	[angan]	ese Ato	MS	
Atom	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{28}
Mn(A)	4.3	2.5	3.8	0.3	0.2	-0.2
Mn(B)	3.5	2.3	3.8	0.2	0.3	-0.2

^{*a*} Of the form $(-\beta_{11}h^2 - \beta_{22}k^2 - \beta_{33}l^2 - 2\beta_{12}hk - 2\beta_{13}hl - 2\beta_{23}kl)$ with $4\beta_{ij} = a_i^*a_j^*B_{ij}$, a_i^* being the length of the *i*th reciprocal axis. With this notation B_{ij} are in units of A^{3} . ^{*b*} Estimated standard deviations are all approximately 0.1 A².

Figure 1.--Atom numbering system. The two phthalocyanine rings are designated "A" and "B" (see Figure 2). For each ring a set of orthogonal axes .s drawn through the N+01, Mn, N-01 and N0+1, Mn, N0-1 atoms to separate the molecule into four quadrants. All atoms not otherwise marked are carbons. The atom C++2A is, therefore, the carbon atom marked "2" in the diagram, located in the (++) quadrant of the "A" phthalocyanine ring. The atoms in the coordinated pyridines are designated as NPNA, C1PNB, etc., and refer to the nitrogen atom of the pyridine coordinated to the Mn of the "A" phthalocyanine ring and the first carbon atom in the pyridine coordinated to the Mn of the "B" phthalocyanine ring, respectively. Because of the uncertainties in the exact positions of the atoms in the molecules of pyridine of crystallization (not shown in this figure), differentiation of the carbon and nitrogen atoms was not meaningful. These atoms are designated simply as 1PM1, 6PM2, i.e., first atom of pyridine molecule no. 1 and sixth atom of pyridine molecule no. 2, respectively.

Figure 2.—Diagram representing the relative orientation of the "A" and "B" phthalocyanine rings.

locate the hydrogen atoms on a difference Fourier were unsuccessful.

Description of the Structure.—The complex (Figure 3) consists of two approximately flat and parallel

Figure 3.—Photograph of a cork-ball model of the $(MnPcPy)_2O$ molecule. Hydrogen atoms are omitted. For clarity, the Pc rings are half their actual thickness.

phthalocyanine ring systems, designated as ring A and ring B, each with a manganese atom at its center. These two ring systems are staggered at 49° with respect to each other so that the phenyl groups on one ring are approximately between the phenyl groups on the other ring. The rings are joined by an oxygen atom which is midway between the two manganese atoms. Each manganese also has a pyridine molecule coordinated opposite to its oxygen atom and oriented so that the plane of the pyridine bisects the (N-01)-Mn-(N+01) angle of the adjacent Pc ring (see Table IV for the atom numbering system). The crystals consist of these complex molecules together with molecules of pyridine of crystallization which are not bonded in any direct way to the complex molecules. The large temperature factors of these pyridines of crystallization suggest disorder or incomplete occupancy of their lattice sites. One of the referees pointed out that these pyridines show bond distances ranging from 1.27 to 1.51 A, bond angles ranging from 104 to 138°, and out-ofplane distances up to 0.25 A. Some important bond distances and angles and their standard deviations are listed in Table IV.

Average values of the lengths and angles of some chemically equivalent bonds are given in Figure 4. These average distances are expected to have standard deviations of the order of 0.01 A. The standard deviations of the bond angles are on the order of 1° or less.

The bond distances and angles are in agreement with results on other phthalocyanines.⁸ The Mn-O distance of 1.71 ± 0.01 A is shorter than predicted for a single covalent bond. It is expected that an explanation of the magnetic properties will involve electronic

11 H.K.L 23 45 67 89	11 FOR 91 141 71 151 111 3 (75 5	24 5 FCA 5 96 7 155 7 15	4 10 11 11	45 142 15 10 15 10 15 15 15 15 15 15 122 15 15 15 122 15 15 122 15 15 15 15 15 15 15 15 15 15	49 147 30 16 50 638 638 379 116 77 29 16	H,K= L 0 1 2 3 4 5 6 7 8 9 H,K=	1, FCB F 30 2C3 L 30 39 69 31 19 11 1,	12) C214 595 463 122 13	L FI 0 3 2 2 3 5 2 6 2 7 1 10 11	2, C 08 FC 40 5 75 36 47 25 90 35 90 35 93 8 49 24 75 7 48 16 31 3 0 16 1	4 H,9 3 1 6 1 9 6 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	38 FC8 31 114 87 68 53 61 53 61 7 47	37 FC6 30 115 80 65 62 64 47 FCA	2 3 5 6 7 1 6 1 6 1 1 1 1 1 1 2	30 100 83 107 95 162 151 77 3. F08 151 179	36 97 54 900 155 155 81 52 81 52 81 52 81 52 81 54 142	L012 H,KL01234567	FOB F 70 34 59 44 FOB F 80 153 1 336 37 61 76 223 2 0	CA 5 CA 85 64 85 64 85 67 28 9	H-K=1 123456789 H-K=	4. 68 27 62 101 102 40 62 4.	11 FG2 42 58 116 38 109 38 109 47 64 12	3 5 6 7 8 9 11 11 11 11 11 11 12	67 56 109 42 124 24 74 30 5, FO8 173 93 171	58 54 124 129 23 57 38 4 120 123 57 38 57 120 164	3 1 5 6 7 8 H + K = 1 1 2 3 4 5	97 1 23 1 72 38 45 28 50 F 67 42 39 58 57 68 57	9293958 6401446C	4 5 7 10 1, x = 1 2 3 4	107 1 151 1 103 1 103 1 103 1 103 1 103 1 71 6 71 2 113 1 78 26	123 122 27 31 31 6 51 15 65 24	9 10 11 11 11 1 1 1 1 1 2 1 3 4 5 6 7 8	C 33 1 33 54 5 7, 08 FC 39 1 47 14 14 35 1 47 14 14 35 1 647 1 71 1 866 6 73 1	4 0 3 4 4 1 4 1 6 2 3 1 1 1 2 2 5 1	81 45 46 76 1237 1237 1237 1237 223	83 39 43 FCA 52 118 52 64 324 48	H.K- D12345678910	8 FOB 188 85 15C 67C 255 94 25 52	6A 2054 1368 2277 6952 47	H.K. I 2 3 4 5 6 7 8 5 1 0 1 4 5 1 6 7 8 5 1 6 7 8 5 1 6 7 8 5 1 6 7 8 5 1 6 7 8 5 1 6 7 8 5 1 8 1 8	9, FC8 F 74 172 1 45 222 2 34 1C7 1 6 51 69 51 69 FC8 F	CA CA CA CA CA CA CA CA CA CA	2	48 24 51 59 43 59 94 94 94 94 94 94 94 94 94 9	32625564 3417150
H. L12334567890 KL00L2334567890 KL12234567890 KL	FOI FOI FOI FOI FOI FOI FOI FOI	0, FC35 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5		106 38 5 26 5 26 5 26 5 26 5 26 5 26 5 26 5 26 5 277 5 400 7 12 23 53 40 71 23 50 7 12 23 50 7 12 23 50 24 55 25 50 34 24 34 24	109 37 34 36 26 55 20 60 34 40 34 55 20 60 34 40 34 55 20 60 21 20 34 40 34 40 34 20 20 34 40 34 20 20 20 20 20 20 20 20 20 20	L0123456789	FC82 FC82	C28639C2724 1C175335843 1C72C494355 1C3572444355 1C35724	KLO12345678901 KLO12345678901 KLO123456789	208 971 6 5 8 8 9 971 6 5 98 97 1 8 6 97 971 6 5 98 9 971 6 5 98 971 8 6 97 971 8 6 97 97 97 97 97 97 97 97 97 97 97 97 97	54343054001419 64005101704110 74100240311110		98 92 92 117 46 40 51 72 14 72 14 72 14 91 72 14 91 72 14 91 72 14 91 72 14 91 72 14 91 71 14 91 71 14 91 71 14 91 71 14 91 71 14 91 71 71 14 91 72 71 14 91 72 71 14 91 72 71 71 71 71 71 71 71 71 71 71 71 71 71	3 4 5 6 7 8 5 7 8 5 7 7 8 5 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5	155 72483 F0374166400070 568067284 565741616400070 56366729738081 5035741616400070 56366729738081 50359549738081 5035977 11765 50359738081 5035977	144163394 F 1111 63394 649707572 146419	89011 K-L0123456789011 K-L0123456789011 K-L012345	21 27 0 40 67 63 21 53 57 54 21 53 57 54 57 57 57 57 57 57 57 57 57 57 57 57 57	2211 C8215430015713 K3387079058727 34052606	LO123456769 XLO123456789 XLO12345678 XLO123	019564037946 079209080594 48168297601 481349 1956402330507 489209080594 48168297601 481349 1115	F1 64364024936 106489751122 F114 685594549265 3AC547816287 4A654294521 5A6117 114	345678901 K.L012345678901 K.L01234567890 K.L01 1 K.	126 429 86 102 59 5, 7275 1150 2863 5, 731 1628 5, 731 1628 5, 731 1628 5, 731 1628 5, 731 1628 5, 731 1628 5, 735 7, 735 7, 7, 735 7, 7,75 7,75	124767430365092111235449484291111448 F 617	67 K= 1 H+UO12345 K= 1 H+UO12345 K= 1 H+UO12345 K= 1 H+UO1234	340 5.81 57973357973337 5.851990 5.86197351 5.802 6.81 5797337 5.851990 5.8617351 5.802 6.81 502 6.81 502 6.81	342 16351400839 84651163 9491886 040224 LA1 04	567890 KLOI23456789 KLOI23456789 KLOI234567890 KLOI23456789 KLOI23456789 KLOI23456	48 48 48 48 48 48 48 48 48 48	3609356 C122870444977 1C50092451647 1C2908149 5609352 9404350500716 CA2663853215 144996241	9011 K. 012345678501 K. 01234567890 K. 012545890 K. 012545890 K. 012545890 K. 01255890 K. 01255890 K. 01255890 K. 01255890 K. 01255890 K. 01255890 K. 01255800 K. 01257800 K. 01258800 K. 0125800 K. 0125800 K. 01258000 K. 0125800 K. 01258000 K. 0125800 K	86 0 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	516 2A136132442515 3A71939222506 4A322356227 H - C	- F 63351 - F 63351 - F 63351 - F 62594 - F 62593 - F 629351 - F 629351 - F 629351 - F 629351 - F 629351 - F 629351 - F 639351 - F 639551 - F 6395551 - F 6395551 - F 639555555555555555555555555555555555555	449133253772 534578177460 66416416955 74917553106 , Figst 2251 , Figst 22528 66441555 74917553106	* LOI234567890 * LOI23456789 * LOI23456789 * LO	504424012300 88805727000000 88805000000000000000000000000000	7419947610443 8483937051350 945087981208 0451	C123456785C #LC123456785C #LC123456785C #LC	577111 110711110 1107111100 1107111100 1107111100 110711100 1107000 1107000000 110700000000	501389712665 231498763228133 346886812273132 449	567 HLC1234567 HLC123456 HLC123456 HLC12346 HLC1234567 HLC123456 HLC123456 HLC123456 HLC1234567 HLC12345	769 6 9 87 9 87 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	661 1055 19420 103487544 1016 0584 10232217548 4487791868 540167396 647122742 74877640

LC 38 43 M,K= 2, 11 L FGB FCA C 27 L5 1 208 200 2 34 19 3 107 104 4 67 92 5 83 76 6 96 96 7 84 70 6 19 17 5 19 23 10 38 37 8 23 37 H,K= 3, 15 L FD8 FCA 0 L22 125 1 61 67 2 170 173 3 56 50 4 101 102 5 73 66 6 71 63 7 16 12 8 32 36 5 32 36 H,K= 3, 14 H,KW 0, 16 L FOB FCA 0 10 32 2 26 28 3 70 75 4 67 66 5 74 62 6 27 20 7 60 55 4,K* 0, 4 L FOB FCA D 173 L69 L 39 53 2 38 46 3 L45 L45 4 L52 L50 5 33 34 6 252 246 H,K= 1, 8 L FCB FCA 0 157 153 1 235 235 2 141 140 3 156 172 4 63 67 5 38 32 H.K. 4, 7 L FOB FCA 0 198 188 1 245 243 2 129 120 3 75 74 4 145 132 5 154 151 H.K. 5, 11 L FOB FCA D 144 123 1 172 170 2 34 25 3 94 103 4 156 152 5 112 99 H,K= 4, 21 L FOB FCA 0 47 43 1 23 22 h.K= C, 17 L FO8 FC4 L 48 48 H.K= 3, 16 L FOB FCA 0 14 10 H.K. 3. 4 L FOB FCA H.K. 6, 4 L FOB FCA H.K. 5, 0 L FOB FCA H,X= 2, 12 L #CB FC4 C 334 330 1 184 183 2 1CO 80 3 62 69 4 74 70 5 57 56 6 54 97 7 28 27 8 44 41 5 25 26 C 166 152 1 232 221 2 196 162 3 206 212 4 297 266 5 49 46 6 231 212 7 203 198 8 49 87 6 7 26 10 27 32 11 0 15 1 262 286 2 162 177 3 120 119 4 162 159 5 120 107 6 34 31 7 22 30 8 71 62 9 0 9 10 66 63 11 45 40 0 242 254 1 218 220 2 158 163 3 46 58 4 16 19 5 273 265 6 75 78 7 58 55 8 107 104 9 53 56 10 46 47 11 16 23 1 80 78 2 77 81 3 130 132 4 24 18 5 81 77 6 29 22 7 37 26 6 17 15 7 36 30 8 0 9 9 32 21 10 42 46 6 107 92 7 150 141 8 40 36 9 53 61 10 56 54 6 105 100 7 42 37 8 102 104 9 0 12 7 138 142 8 67 78 9 61 57 10 0 10 11 39 43 2 56 57 3 187 187 4 76 75 5 19 17 6 16 36 7 25 23 H,K= 7, 9 L FCB FCA 0 17 25 1 167 168 2 150 150 3 35 28 4 46 52 5 83 74 6 52 40 7 25 29 8 127 125 9 82 20 10 30 38 11 C 18 6 70 78 7 72 73 11 C 18 H, KF 2, 1 L FOB FCA 0 244 2734 1 230 235 2 136 140 4 4205 206 5 81 49 4 205 206 5 81 49 5 81 49 5 81 49 5 81 49 5 123 122 9 57 57 L0 C 11 L1 89 92 H.R= 6, 17 L FOE FCA C 51 47 1 53 48 2 32 27 3 73 65 4 44 50 5 45 34 6 30 31 H.K. 5, 12 L FOE FCA 0 48 45 1 25 17 2 130 132 3 130 13 4 36 92 5 72 63 6 31 34 7 63 58 8 68 76 9 49 49 10 38 34 H,K= 4, 8 L FOB FGA 0 79 86 1 91 87 2 36 31 3 111 107 4 98 81 5 26 27 6 91 91 7 127 126 8 21 20 9 53 61 10 82 81 10 83 81 10 81 81 10 42 46 H.K. 1, 9 L FCS FCA 0 60 59 1 23 125 2 89 53 3 54 76 4 33 21 5 137 125 5 6 67 62 7 89 53 8 25 26 9 27 37 10 0 19 H.K. C. 5 L FOB FCA 1 433 457 2 78 65 3 76 75 5 32 16 6 63 46 7 53 66 8 116 116 9 98 107 10 42 44 11 23 27 7 37 26 H,K* 3, 17 L PCB FGA 0 64 57 0 4 57 1 4 52 4 97 94 5 27 317 7 45 16 L PCB FGA 0 4 97 94 5 27 317 7 45 16 L PCD FGA 0 95 867 1 407 74 5 45 36 6 11 14 H,K= 2, 13 L fCb FCA G C 6 1 44 54 2 161 167 3 76 69 4 13 6 5 100 101 6 13 7 7 4 0 48 6 19 27 9 20 21 $\begin{array}{c} \mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{3}$ 6 3C 31 H+K* 6, 16 L FOR FCA C 39 35 1 49 45 2 22 13 3 39 38 4 05 98 5 44 37 H-K* 6, 19 L FOB FCA 0 22 16 1 32 27 3 67 66 1 42 8 37 H-K* 6, 20 11 0 13 H+K= 3, 5 L FOS FCA C 96 93 L 45 43 2 145 127 3 100 8e 4 136 142 5 187 165 6 226 217 7 179 172 8 31 22 9 71 72 12 0 11 11 11 8
 M, K
 6.
 5

 0
 40
 23

 1
 40
 23

 2
 40
 23

 2
 40
 23

 4
 12
 56

 5
 719
 51

 4
 12
 56

 5
 719
 51

 4
 12
 56

 6
 6
 6

 10
 75
 82

 10
 75
 6

 0
 106
 107

 12
 128
 121

 13
 13
 13

 14
 138
 148

 157
 12
 128

 12
 128
 121

 138
 131
 101

 100
 100
 101

 100
 100
 101

 100
 100
 101

 1111
 127
 138

 1111
 127
 134

 1111
 127</td L1 89 92 H, K* 2, 2 L FOB FCA 0 179 183 1 72 68 2 197 205 3 816 848 4 322 422 5 145 126 6 132 128 6 70 76 9 116 112 10 11 11 11 0 11 $\begin{array}{c} \mathsf{H},\mathsf{K}^{\texttt{H}} & \mathbf{3}, \ 13\\ \mathsf{L} & \mathbf{5}, \ \mathsf{S}, \ \mathsf{CA}\\ \mathsf{C} & \mathbf{13}, \ \mathsf{S}, \ \mathsf{CA}\\ \mathsf{C} & \mathbf{13}, \ \mathsf{CA}, \ \mathsf{CA}\\ \mathsf{C} & \mathbf{105}, \ \mathsf{105}, \ \mathsf{125}\\ \mathsf{C} & \mathbf{105}, \ \mathsf{105}, \ \mathsf{CA}\\ \mathsf{C} & \mathbf{3}, \ \mathsf{C1}, \ \mathsf{CA}\\ \mathsf{C} & \mathbf{5}, \ \mathsf{C3}, \ \mathsf{S}, \ \mathsf{CA}\\ \mathsf{C} & \mathbf{5}, \ \mathsf{C3}, \ \mathsf{S}, \ \mathsf{CA}\\ \mathsf{C} & \mathbf{5}, \ \mathsf{C3}, \ \mathsf{S}, \ \mathsf{C4}\\ \mathsf{C} & \mathbf{5}, \ \mathsf{C4}\\ \mathsf{C} & \mathbf{6}, \ \mathsf{C5}\\ \mathsf{C4} & \mathsf{C5}\\ \mathsf{C6} & \mathsf{C5}\\ \mathsf{C6} & \mathsf{C5}\\ \mathsf{C6} & \mathsf{C5}\\ \mathsf{C6} & \mathsf{C6}\\ \mathsf{C6}\\ \mathsf{C6} & \mathsf{C6}\\ \mathsf{C6}\\ \mathsf{C6} & \mathsf{C6}\\ \mathsf{C6}\\ \mathsf{C6} & \mathsf{C6}\\ \mathsf{C6}\\$
 H,K 1, 10

 L
 F(10

 2
 113

 2
 113

 3
 5

 4
 12

 4
 13

 5
 5

 4
 12

 4
 13

 4
 12

 5
 13

 4
 12

 4
 12

 4
 13

 5
 13

 6
 13

 7
 23

 8
 5

 9
 5

 12
 20

 20
 20

 12
 20

 12
 20

 12
 20

 25
 46

 4
 3

 12
 20

 12
 20

 12
 20

 13
 40

 14
 20

 26
 48

 13
 40

 14
 20
 < $\begin{array}{c} \mu_{xx} = 4, \quad 0 \\ \mu_{xx} = 4, \quad 0 \\ \mu_{xx} = 1, \quad 0 \\ \mu_{xx$
 9
 20
 21

 H, K. - 2, 164
 14
 2

 L PC6 + 64
 1
 2

 1
 52
 60

 2
 4
 42

 3
 264
 164

 7
 27
 40

 7
 27
 40

 7
 27
 40

 9
 2
 17

 10
 17
 87

 4
 2
 15

 4
 2
 17

 6
 7
 7

 6
 7
 7

 4
 5
 167

 7
 6
 17

 1
 17
 6

 2
 16
 51

 3
 24
 42

 3
 24
 42

 2
 16
 51

 4
 20
 27

 7
 6
 57

 7
 8
 32

 1
 14

 He K*
 3.6
 6

 L F G0 162
 C
 100 165

 C 190 185
 2 135 125
 2

 2 135 127
 105 93
 105 93

 4 6 6 61
 111
 1

 5 33 377
 111
 11

 6 33 377
 111
 11

 6 13 307
 111
 11

 6 3 100 97
 4
 30 96

 3 100 97
 4
 807 96

 4 107 9100
 7 167 100
 100

 7 167 155
 5 54 52
 107 81
 6 11 14 H.K. 3, 19 L FOB FCA O 96 102 l 60 54 2 54 61 3 19 11 4 62 71 5 75 67 H.K. 6, 20 L FDB FCA G G L G L 44 31 2 38 40 3 62 62 11 0 11 H.K.# 2, 3 L.FOBFCA 0 61 63 1 124 110 2 432 434 3 675 671 4 526 495 5 64 77 6 149 132 7 0 16 6 60 60 9 39 39 10 11 17 11 11 23 11 0 6 H,K* 0, 7 L FOB FGA 1 41 37 2 205 213 3 115 117 4 60 56 5 58 63 6 144 142 7 70 63 8 51 47 9 0 2 10 43 49 11 11 2 6 H.K. 7. C L. FOB FCA 1 243 27C 2 38 38 3 5% 63 4 109 103 5 4C 47 6 0 4 7 23 17 8 63 65 4 10 39 30 11 54 53 2 41 28 MrK= 1, 0 L FDG FCA 1 195 218= 2 108 106 3 54 54 4 10 8 5 105 97 6 56 61 7 126 126 8 45 49 9 142 L47 10 L5 30 11 0 16 5 /3 6/ H,K= 3, 20 L FOB FCA 0 0 18 1 35 34 2 74 73 3 86 84 4 56 67 8 16 13 H,K* 5, 15 L FCC FCA 0 50 60 1 87 93 2 65 62 4 123 16 5 72 65 8 28 28 H,K* 5, 16 L FCC FCA 0 67 80 1 42 41 2 32 24 H,K# 3, 21 L FOB FCA 0 70 76 1 34 41 2 59 35 10 30 29 H,K= 1, 12 L FCB FCA C FCB FCA 0 30 21 1 76 94 2 49 54 3 203 169 4 30 35 5 39 45 6 69 65 7 31 31 8 19 19 9 11 22 11 11 23 H.K= 2. 4 L FOS FCA C 4G 53 1 375 306 2 247 246 3 263 251 4 390 359 5 93 86 6 249 243 7 75 71 6 146 149 9 31 31 • 0, 8 FOB FCA 95 96 147 155 71 74 12 4 151 156 113 13C 34 32 H,K= 2, 16 L FCB FC6 C 31 30 1 114 115 2 87 80 3 68 65 4 83 85 5 53 62 6 61 64 7 47 47 - 46 43 - 76 43 - 768 FCA - 758 FCA - 75 52 - 2 123 118 - 3 97 58 - 4 37 32 - 5 72 64 - 6 32 3 H+K= 7, 1 L FOB FCA 0 39 30 1 147 143 2 154 161 3 35 32 4 67 71 5 71 80 6 42 79 H,K= 1, L FOB / C 337 1 534 2 108 3 377 4 122 H,K* 4, 0 L FOB FCA 0 80 88 1 153 152 2 336 354 3 37 38 4 61 67 FCA 396 638 92 379 116 4.K- 6, 8 L FOE FCA 0 211 211 1 133 115 H.K. 3. 8 L FO8 FCA H.K- 5, 4 L FO8 FCA

 $Phthalocyanatopyridinemanganese (III) - \mu - oxo-phthalocyanatopyridinemanganese (III) Dipyridinate$
 7
 81
 85
 85
 85
 84
 85
 7
 1.1
 85
 7
 1.2
 85
 7
 1.4
 8
 85
 7
 1.4
 8
 85
 7
 1.4
 8
 65
 7
 1.4
 8
 64
 61
 7
 1.4
 64
 61

 1
 1.6
 1.6
 0.7
 1.6
 1.3
 3.3
 3.3
 3.3
 3.3
 3.3
 3.3
 3.6
 1.6
 1.6
 3.6
 3.7
 3.7
 3.8
 3.8
 3.7
 3.7
 3.6
 1.6
 1.6
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 3.7
 4
 32
 820
 184

 9
 112
 103
 7
 129
 124

 9
 112
 103
 7
 129
 124

 9
 103
 05
 100
 05
 23

 9
 35
 40
 112
 2
 2

 4
 104
 10
 05
 23

 4
 104
 10
 100
 05
 23

 4
 104
 10
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 L 408 FCA 1 86 84 2 70 61 3 59 37 5 161 137 6 0 122 7 0 12 6 93 91 5 84 69 1C 0 4 L1 0 10 C 233 221 1 28 28 2 \$7 47 3 86 89 4 20 16 5 9 17 6 157 154 6 157 154 8 64 62 9 16 27 6 230 221 7 66 63 8 13 17 9 1C5 1C5 10 27 30 11 0 27 2 09 83 3 71 71 4 81 99 5 83 74 4 121 112 7 161 159 8 91 91 9 11 9 10 162 143 0 10 17 1 159 179 2 24 28 3 89 62 4 17 21 5 77 76 6 79 82 7 27 31 8 0 6 9 26 35 10 85 90 11 0 5 4 73 61 5 80 83 6 70 67 7 76 78 8 11 13 H,K+ D+ O L FOB FCA 2 45 33 4 110 103 6 71 69 8 13 11 10 0 22 164 162 80 74 77 66 92 91 61 63 10 5 81 83 93 90 64 67 5 84 86 6 16 6 7 60 51 1C 22 33 11 39 42 123454729 H: 37 - 2, 8 L FCE PCA C B1 72 1 72 75 2 15 72 3 74 74 4 17 79 5 164 151 6 147 164 7 53 72 8 52 54 10 56 56 , eu 51
H.K= 1, 17
L F08 FCA
0 20 7
1 61 67
3 36 25
4 71 75
5 47 78
6 79 82
7 30 26
H.K= 3 *** 10 0 22 Hekk 0, 1 L FOB FCA 1 440 5446 2 146 15C 3 52 60 4 64 65 5 13 19 5 13 19 5 7 7 70 8 121 125 9 14 19 10 0 12 11 0 16 $\begin{array}{c} \textbf{w}, \textbf{k} = & \textbf{5}, & \textbf{6} \\ \textbf{C} & \textbf{F}, \textbf{C} & \textbf{F}, \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{F}, \textbf{C} & \textbf{C} & \textbf{F}, \textbf{C} \\ \textbf{C} & \textbf{F}, \textbf{C} & \textbf{C} & \textbf{F}, \textbf{C} \\ \textbf{C} & \textbf{F}, \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} \\$ 9 16 27 H,K= 0, 13 L FOB FCA L 55 39 2 178 177 3 97 45 4 82 83 5 61 68 6 10 16 7 0 4 6 10 16 7 0 4 6 10 26 7 0 4
 H,K=
 8, 11

 L
 C28
 F131

 C
 73
 F141

 J
 77
 F5

 4
 70
 66

 5
 54
 470

 6
 63
 55

 7
 75
 5

 4
 43
 65

 5
 34
 43

 L
 FCE
 F22

 L
 FCE
 F24

 C
 32
 36

 1
 25
 18

 3
 25
 13

 1
 13
 120

 3
 13
 10

 3
 35
 36

 H
 K
 Solution

 1
 122
 123

 1
 122
 123

 3
 130
 184

 4
 130
 184

 3
 131
 111

 1
 140
 184

 4
 100
 384

 5
 111
 111

 1
 100
 384

 10
 37
 100

 11
 100
 37

 11
 100
 37

 11
 37
 100

 127
 37
 100

 127
 37
 100

 127
 37
 100

 127
 37
 100

 127
 37
 100

 127
 100
 100

 127
 100
 100

 120
 100
 100

 120
 100
 100

 11
 100
 100

 120
 100
 100

 11</ H₁K= 1, 18 L FOB FCA O 142 146 1 21 28 2 40 35 3 29 34 4 83 84 5 45 49 6 28 23 1.1 30 31
H+K= 1, 6
L FOB FCA
0 1C3 G6
1 56 57
2 188 194
3 1C7 103
4 135 117
5 50 95
6 61 67
7 72 72
8 59 63
9 93 57
10 16 19
11 23 24
H+K= 1, 7
 +
 16
 27

 H-KE
 0.
 14

 I
 60 FCA
 0

 0
 127
 118
 1

 1
 38
 28
 72
 3
 217
 220

 3
 217
 20
 32
 6
 61
 76
 7
 2
 3
 20
 32
 6
 61
 76
 7
 2
 4
 3
 3
 9
 5
 3
 5
 7
 2
 2
 4
 17
 2
 7
 2
 4
 17
 2
 7
 2
 3
 17
 2
 4
 17
 2
 7
 2
 3
 17
 2
 4
 10
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

 H.K.*
 J.
 Z

 L
 P (D)
 P (L)

 L
 D (D)
 P (L)

 L
 13
 117

 2
 23
 313

 4
 343
 314

 *
 343
 316

 *
 343
 316

 *
 343
 316

 *
 343
 316

 *
 343
 316

 *
 343
 316

 *
 43
 14

 *
 14
 94

 *
 14
 94

 *
 34
 14

 *
 150
 164

 *
 120
 124

 121
 121
 121

 *
 120
 132

 *
 120
 132

 *
 120
 132

 *
 120
 132

 *
 120
 132

 *
 120
 133

 *
 120 8 36 36 H,R= 8, 13 C 6C8 FGA C 61 50 1 30 29 2 14 9 3 76 78 4 90 88 5 1C8 96 6 15 9 7 16 14 8 63 61 H,K= 0, 15 L F08 FGA 2 21 25 3 0 10 4 124 L30 5 94 82 6 0 7 7 25 25 8 0 15 6 52 51 H,K= 4, 19 L FGB FCA 0 64 56 1 40 38 2 16 44 5 16 43 5 55 69 H,K= 4, 20 L FDB FCA L FDB FCA 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 53 46 1 55 56 11 23 24 H,K= 1, 7 L FC8 FCA 0 31 49 1 110 1C0 2 28 28 6 3 57 4 117 1C6 5 84 95 6 73 66 7 95 92 8 71 61 10 54 59 11 L1 23 11 38 41 H,K= 4, 6 L FOO FCA 0 75 71 1 154 156 2 105 98 3 132 127 4 119 105 5 81 81 6 251 237 7 225 211 8 132 131 9 145 138 10 16 14 11 32 37

£ 52 43 7 49 45 8 124 122 9 16 20

 V
 1.6
 2.0

 H., K=
 G.
 <thG.</th>
 G.
 <thG

H,R. 8, 15 L FC8 FCA

H,K= 8, 19 L FC8 FCA C 37 43 1 30 32 2 45 40 3 30 35

H, K= 6, 2C L FCB FCA C 23 11 H, K= 9, G L FCB FCA L FCB FCA L FCB FCA 2 172 186 2 172 186 2 172 186 3 37 2 222 240 5 34 29 6 167 102 7 C 7 6 50

6 48 59 7 48 47 8 68 66 9 22 20 10 74 72

 H
 S
 4

 L
 POBFACA
 C

 C
 0.83
 S

 1.27
 1.35
 2

 1.127
 1.35
 2

 3.01
 94
 4

 4.62
 65
 3

 4.61
 1.12
 1.14

 6.71
 0.01
 1.03

 10.34
 4
 6

 1.03
 5.4
 4

 1.03
 5.4
 4

 1.03
 5.4
 4

 1.03
 5.4
 4

 1.03
 5.4
 4

 7.1
 1.07
 1.07

 1.03
 5.4
 4

 2.85
 3.2
 9

 3.12
 5.3
 5.0

 7
 2.5
 3.4

 9
 5.1
 5.0

 7
 5.3
 5.0

 1.03
 5.1
 5.1

 1.01
 1.05
 5.1

TABLE III Observed and Calculated Structure Factors $(\times 2.0)$ of

TABLE	IV
-------	----

Important Bond^a Distances (in A) and Angles and Their Standard Deviations

	Bond Distances ^b		The Angle Between	Angles No. 1
	Intraring Distances		C++2 w №++3 w Ma	125 129
Bond	Ring A	Ring B	C=+2 = R=+3 = Ma C==2 = N==3 = Ma	125 123 124 127
Mn = N++3	1.96	1.94	$C_{+-2} = N_{+-3} = M_{2}$	127 126
Min - N-+3 Min - N3	1.90	1.95	N=+3 - C=+2 - NO+1	129 124 128 129
Man - 14+-3 14+01 - C++4	1.96 1.30	1.97	N3 = C2 = NO-1 N+-3 = C+-2 = NO-1	129 125 124 126
N+01 - C+-4	1.34	1.32	C++2 - NO+1 - C-+2 C+-2 - NO-1 - C2	123 125 124 127
NO+1 - C-+2	1.32	1.31		111 106
N=01 - C4	1.30	1.35	C2 - N3 - C4	110 107
NO-1 - C2 NO-1 - C+-2	1.30	1.35	N++3 - C++2 - C++10	106 109 107 110
N++3 - C++4 N++3 - C++2	1.36 1.37	1,35 1,39	N-+3 - C-+2 - C-+10 N3 - C2 - C10	108 109 108 109
N-+3 - C-+4	1.37	1.35	N+-3 - C+-2 - C+-10 N++3 - C++4 - C++5	111 109
N3 - C4	1.34	1.35	N=+3 = C=+4 = C=+5	111 110
N3 - C2 N+-3 - C+-4	1.37	1.36	N+-3 - C+-4 - C+-5	111 109
N+-3 - C+-2 C++2 - C++10	1.38	1.39	$C_{+++} = C_{+++} = C_{++} = $	107 105 105 106
C++4 - C++5 C=+2 - C=+10	1.50 1.43	1.49	C4 - C5 - C10 C+-4 - C+-5 - C+-10	106 104 106 105
C-+4 - C-+5 C2 - C10	1.43	1.44	C++2 - C++10 - C++5 C++2 - C++10 - C++5	108 108
C4 - C5	1.47	1.48	C = 2 = C = 10 = C = 5	107 110
C+=2 = C+=10 C+=4 = C+=5	1.44	1.47	C++5 - C++6 - C++7	114 113
C++5 - C++10 C-+5 - C-+10	1.33	1.30	C-+5 - C-+6 - C-+7 C5 - C6 - C7	114 115 110 117
C5 - C10 C+-5 - C+-10	1.38	1.58 1.41	C+-5 - C+-6 - C+-7 C++6 - C++7 - C++8	115 118 120 122
C++5 - C++6	1,41	1.43	$C_{-+6} - C_{-+7} - C_{-+8}$	123 122
C5 - C6	1,47	1.41	C+-6 - C+-7 - C+-8	121 120
C++6 - C++7	1.46	1.44	C++7 - C++8 - C++9 C-+7 - C-+8 - C-+9	120 125 121 124
C-+6 - C-+7 C6 - C7	1.44	1.43	C7 - C8 - C9 C+-7 - C+-8 - C+-9	123 123 122 121
C+-6 - C+-7 C++7 - C++8	1,44 1.36	1.39	C++8 - C++9 - C++10 C-+8 - C-+9 - C-+10	11 2 115 117 115
C-+7 - C-+8 C7 - C8	1,41 1.36	1.37 1.42	$C_{8} = C_{9} = C_{10}$	114 115 118 117
C+-7 - C+-8	1.42	1.46	C++9 - C++10 - C++5	124 121
C++8 = C++9	1.40	1.41	$C_{9} = C_{10} = C_{5}$	122 119
C8 - C9 C+-8 - C+-9	1,42	1.40	C+-9 - C+-10 - C+-5 C++10 - C++5 - C++6	121 120 124 125
C++9 - C++10 C-+9 - C-+10	1.42	1.44 1.43	C-+10 - C-+5 - C-+6 C10 - C5 - C6	124 123 125 125
C9 - C10 C+-9 - C+-10	1,44 1,38	1.44 1.43	C+-10 - C+-5 - C+-6	124 123
	Other Distances		Other Ang	;les
Bond	Dist. Bond	l Dist	Hat(A) − 0 − Hat NPNA − Hat(A) − 0	(B) 178° 178
Man(A) – Man(B)	3.42 C2PNB -	C3PNB 1.39	NPNB - Mn(B) - 0 C1PNA - NPNA - C51	178 FNA 122
Man(A) = 0 Man(B) = 0	1.71 C3PNB - 1.71 C4PNB -	C4PNB 1.40 C5PNB 1.39	NPNA - C1PNA - C2 C1PNA - C2PNA - C3	FNA 119
Mn (A) - NPNA	2.15 C5PNB -	NPNB 1.37 N+=3A 2.78	C2PNA - C3PNA - C4)	NA 119
NPNA - CIPNA	1.35 N++3A -	N-+3A 2.76	C4PNA - C5PNA - NP	NA 116
C2PNA - C3PNA	1.36 N3A -	N+-3A 2.78	CIPNB - NPNB - C5 NPNB - C1PNB - C2	PNB 116 PNB 124
C3PNA - C4PNA C4PNA - C5PNA	1.35 N++3B - 1.44 N++3B -	N-+3B 2.76	C1PNB - C2PNB - C3 C2PNB - C3PNB - C41	PNB 119 PNB 116
C5PNA - NPNA NPNB - C1PNB	1.38 N3B - 1.33 N3B -	N-+3B 2.75 N+-3B 2.78	CJPNB - C4PNB - C5) C4PNB - C5PNB - NPI	PNB 121 NB 123
CIPNE - C2PNE	1.43			
	Bond Angles			
Ma 4-1	Intraring Angles	tag]ag	a. See Fig. 1 for atom numbering	system.
The Angle Detwo	Ring A	Ring B	b. The standard deviations of in	dividual bond distances are
N++3 - Hn -	N-+3 90	90	estimated to be about 0.04 Å,	on the basis of the differences
N≈+3 - Min - Nť3 - Min -	N+-3 90	90	between bonds which are chemi	cally equivalent and a comparison
N+-3 - Ma - Man - N++3 -	N++3 90 C++4 124	90 1 2 6	with the known dimensions of	benzene rings. These estimates
Hn - N-+3 - Hn - N3 -	C-+4 127 C4 126	126 126	do not apply to the pyridine	of crystallization, which appears
Man - N+-3 - N++3 - C++4 -	C+=4 126 N+01 130	125 128	to have very large and anisot	ropic thermal motion (B is about
N-+3 - C-+4 -	N-01 125 N-01 128	127	15 to 20 $Å^2$) and which may have	ve some kind of disorder. The
N+-3 - C+-4 -	N+01 125	128	standard deviation of the ind	ividual bond angles are estimated
C++4 - N+01 - C-+4 - N-01 -	C4 123	121	to be about 2°.	

coupling between manganese atoms through this bond system.

Parts of the phthalocyanine rings deviate significantly from planarity (Table V). This is especially true of the carbon atoms of the eight phenyl groups. These phenyl groups are themselves planar to within 0.02 A but are twisted out of the planes of the Pc rings. A study of the packing model of the crystal shows that there is considerable crowding around the phenyl groups. While the average of the phenyl group C-C bond dis-

Table	V
-------	---

DISTANCES (IN A) OF THE ATOMS IN THE TWO PHTHALOCYANINE®								
AND COORDINATED PYRIDINE RINGS FROM								
THEIR LEAST-SQUARES PLANES ^b								
Equations of the Least-Squares Planes, where X, Y, and Z								
Are the Atom Coordinates in A								
Pc Ring A: $0.296X - 0.374Y - 0.879Z + 1.933 = 0$								
Pc Ring B: $0.281X - 0.354Y - 0.892Z - 1.572 = 0$								
Pv A: $-0.811X - 0.585Y - 0.004Z + 2.080 = 0$								

Dist to

0.951X - 0.194Y + 0.243Z - 0.777 = 0

Dist to

Py B:

Atom ^e	LS plane ^d	Atom	LS plane ^a
Pe Rir	ıg A	Pc Rir	ıg B
Mn(A)	0.04	Mn(B)	-0.01
N+01A	0.06	N + 01B	0.02
C + +2A	-0.06	C + +2B	-0.01
N++3A	-0.04	N + +3B	0.06
C + + 4A	0.00	C + +4B	0.06
C + +5A	0.00	C + + 5B	0.05
C + + 6A	0.12	C + +6B	0.07
C + +7A	0.08	C + +7B	-0.01
C + + 8A	0.00	C + +8B	-0.12
C + +9A	-0.08	C + +9B	-0.12
C + + 10A	-0.06	C + + 10B	-0.02
N0+1A	-0.03	N0+1B	-0.07
C - +2A	0.03	C - +2B	-0.08
N - + 3A	-0.01	N - +3B	0.10
C - +4A	0.03	C - + 4B	-0.03
C - + 5A	0.07	C - + 5B	-0.22
C - + 6A	0.14	C - + 6B	-0.43
C - +7A	0.25	C - +7B	-0.66
C - + 8A	0.24	C - + 8B	-0.69
C - +9A	0.15	C - +9B	-0.47
C - + 10A	0.09	C - + 10B	-0.25
N - 01A	0.04	N - 01B	0.02
C2A	-0.02	C2B	0.00
N 3A	-0.04	N3B	0.04
C4A	0.01	C4B	0.04
C = -5A	-0.01	C = -5B	0.04
C6A	-0.04	C = -6B	0.01
C = -7A	-0.11	C = -7D	-0.07
C = -8A	-0.19	$C = -\delta D$	-0.10
C = -9A	-0,10	C = -9D	-0.10
C = -I0A	-0.00	U = 10D	-0.07
$C \pm -24$	-0.03	$C \pm -2B$	-0.08
N + - 3A	-0.04	N + -3B	0.02
C + -4A	0.04	C + -4B	-0.01
C + -5A	0.19	C + -5B	-0.17
C + -6A	0.34	C + -6B	-0.31
C + -7A	0.39	C + -7B	-0.42
C + -8A	0.27	C + -8B	-0.43
C + -9A	0.16	C + -9B	-0.30
C + -10A	0.10	C + -10B	-0.16
Py Coord	linated	Py Coord	linated
to Rin	ıg A	to Rin	ıg B
NPNA	0.00	NPNB	0.00
C1PNA	-0.02	C1PNB	0.02
C2PNA	0.03	C2PNB	-0.03
C3PNA	-0.02	C3PNB	0.02
C4PNA	0.01	C4PNB	0.00
C5PNA	0.00	C5PNB	-0.01

^a The least-squares planes for the Pc rings were determined using all atoms in the rings except the six carbon atoms in each phenyl group—these atoms are in italics. ^b The least-squares planes are not weighted. ^c See Figure 1 for the atom numbering system. ^d The standard deviations are estimated at 0.04 A.

Figure 4.--Average bond distances and angles.

tances is typical $(1.41 \pm 0.02 \text{ A})$, the bond angles deviate somewhat from the expected 120° . The same two angles in each of the eight phenyl groups ($\angle 5$, 6, 7, and $\angle 8$, 9, 10; see Figure 1) are less (average, $115 \pm 2^{\circ}$) than the other angles (average, $123 \pm 2^{\circ}$). It is not clear whether this situation is (i) an artifact of the methods used to collect the data and refine the structure, (ii) the result of packing forces, or (iii) the result of subtle electronic effects.

The packing model also shows that the staggering of the two Pc rings by 49° rather than 45° is probably due to the coordinated pyridine on the "B" ring being wedged between the phenyl group in the (+-) quadrant of the "A" ring and the phenyl group in the (-+)quadrant of the "B" ring (see Figure 1). The 97° dihedral angle between the plane of the pyridine coordinated to Mn(B) and the plane of the "B" ring is also considered to arise from molecular packing forces. The corresponding dihedral angle between the "A" ring and its pyridine is 91 $\pm 2^{\circ}$.

In conclusion, the "irregularities" in the geometry of the $(Mn^{III}PcPy)_2O$ molecules are considered to arise from molecular packing forces and no chemical significance is assumed except as a reflection of the flexibility of such a large molecule. The mechanisms proposed for the formation of this complex^{2,3} need to be reexamined in the light of its formulation as $(Mn^{III}-PcPy)_2O$ rather than $Mn^{IV}PcPyO$ as previously proposed.

Acknowledgment.—We thank Professor Melvin Calvin for bringing this very interesting substance to our attention.